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Abstract

We develop a High Frequency (HF) trading strategy where the HF trader uses her superior speed to

process information and to post limit sell and buy orders. By introducing a multi-factor mutually-exciting

process we allow for feedback effects in market buy and sell orders and the shape of the limit order book

(LOB). Our model accounts for arrival of market orders that influence activity, trigger one-sided and

two-sided clustering of trades, and induce temporary changes in the shape of the LOB. We also model

the impact that market orders have on the short-term drift of the midprice (short-term-alpha). We show

that HF traders who do not include predictors of short-term-alpha in their strategies are driven out of the

market because they are adversely selected by better informed traders and because they are not able to

profit from directional strategies.

Keywords: Algorithmic Trading, High Frequency Trading, Short Term Alpha, Adverse Selection,

Mutually-Exciting Processes, Hawkes processes

1. Introduction

Most of the traditional stock exchanges have converted from open outcry communications between human

traders to electronic markets where the activity between participants is handled by computers. In addition
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to those who have made the conversion, such as the New York Stock Exchange and the London Stock

Exchange, new electronic trading platforms have entered the market, for example NASDAQ in the US

and Chi-X in Europe. Along with the exchanges, market participants have been increasingly relying on

the use of computers to handle their trading needs. Initially, computers were employed to execute trades,

but nowadays computers manage inventories and make trading decisions; this modern way of trading in

the electronic markets is known as Algorithmic Trading (AT).

Despite the substantial changes that markets have undergone in the recent past (see Cvitanic and Kirilenko

(2010)), some strategies used by investors remain the same. When asked about how to make money in

the stock market, an old adage responds: “Buy low and sell high”. Although in principle this sounds like

a good strategy, its success relies on spotting opportunities to buy and sell at the right time. Surprisingly,

more than ever, due to the incredible growth in computing power, a great deal of the activity in the US

and Europe’s stock exchanges is based on trying to profit from short-term price predictions by buying low

and selling high.2 The effectiveness of these computerized short-term strategies, a subset of AT known

as High Frequency (HF) trading, depends on the ability to process information and send messages to

the electronic markets in microseconds, see Cartea and Penalva (2012). In this paper we develop an HF

strategy that profits from its superior speed advantage to decide when and how to enter and exit the

market over extremely short time intervals. A unique characteristic to HF trading is that the strategies

are designed to hold close to no inventories over very short periods of time (seconds, minutes, or at most

one day) to avoid both exposure to markets after close and to post collateral overnight. Thus, profits are

made by turning over positions very quickly to make a very small margin per roundtrip transaction (buy

followed by a sell or vice-versa), but repeating it as many times as possible during each trading day.

In the past, markets were quote driven which means that market makers quoted buy and sell prices and

investors would trade with them. Nowadays, there are limit order markets where all participants can post

limit buy or sell orders; i.e. behave as market makers in the old quote driven market. The limit orders

(LOs) show an intention to buy or sell and must indicate the amount of shares and price at which the

agent is willing to trade. The limit buy (sell) order with the highest (lowest) price tag is known as the best

bid (best offer). During the trading day, all orders are accumulated in the limit order book (LOB) until

they find a counterparty for execution or are canceled by the agent who posted them. The counterparty is

a market order (MO) which is an order to buy or sell an amount of shares, regardless of the price, which

is immediately executed against LOs resting in the LOB at the best execution prices.

2See for example CFTC and SEC (2010), and The Government Office for Science, London (2012).
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There is little evidence on the source of HF market making profits, but the picture that is emerging is that

price anticipation and short-term price deviations from the fundamental value of the asset are important

drivers of profits. On the other hand, from the classical microstructure literature on adverse selection

(see e.g., O’Hara (1998)), we also know that strategies that do not include in their LOs a buffer to cover

adverse selection costs, or that strategically post deeper in the book to avoid being picked off, may see

their accumulated profits dwindle as a consequence of trading with other market participants that possess

private or better information. In the long term, HF traders (HFTs) who are not able to incorporate short-

term price predictability in their optimal HF market making strategies, as well as account for adverse

selection costs, are very likely to be driven out of the market.

The goal of this paper is to develop a particular dynamic HF trading strategy based on optimal postings

and cancelations of LOs to maximize expected terminal wealth over a fixed horizon T whilst penalizing

inventories, which will be made mathematically precise in Section 5.1. The HFT we characterize here can

be thought of as an ultra-fast market maker where the trading horizon T is at most one trading day, all

the LOs are canceled an instant later if not filled, and inventories are optimally managed (to maximize

expected penalised terminal wealth) and drawn to zero by T .3 Early work on optimal postings by a

securities dealer is that of Ho and Stoll (1981) and more recently Avellaneda and Stoikov (2008) study

the optimal HF submission strategies of bid and ask LOs.

Intuitively, the HF dynamic strategy we find maximizes the expected profits resulting from roundtrip

trades by specifying how deep on the sell and buy side the LOs are placed in the LOB. The HF strategy

is based on predictable short-term price deviations and managing adverse selection risks that result from

trading with counterparties that may possess private or better information. Clearly, the closer the LOs

are to the best bid and best offer, the higher the probability of being executed, but the expected profits

from a roundtrip are also lower and adverse selection costs higher.

Accumulated inventories play a key role throughout the entire strategy we develop. Optimal postings

control for inventory risks by sending quotes to the LOB which induce mean reversion of inventories to

an optimal level and by including a state dependent buffer to cover or avoid expected adverse selection

costs, as will be discussed in Sections 5.2, 5.3, and 6. For example, if the probability of the next MO

3HFTs closely monitor their exposure to inventories for many reasons. For example, HFTs’ own risk controls or regulation
do not allow them to build large (long or short) positions; the HFT is capital constrained and needs to post collateral against
her inventory position. Moreover, we remark that there is no consensus on characterizing HFTs as market makers because
some stakeholders and regulatory authorities point out that their holding periods are too short to consider them as such, see
for example European Commission (2010).
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being a buy or sell is the same, and inventories are positive, then the limit sell orders are posted closer

to the best ask and the buy orders are posted further away from the best bid so that the probability

of the offer being lifted is higher than the bid being hit. Furthermore, as the dynamic trading strategy

approaches the terminal date T , orders are posted nearer the midquote to induce mean-reversion to zero

in inventories which avoids having to post collateral overnight and bearing inventory risks until the market

opens the following day. Similarly, if the HF trading algorithm detects that LOs on one side of the LOB are

more likely to be adversely selected, then these LOs are posted deeper into the book in anticipation of the

expected adverse selection costs. An increase in adverse selection risk could be heralded by MOs becoming

more one-sided as a consequence of the activity of traders acting on superior or private information who

are sending one-directional MOs.

Trade initiation may be motivated by many reasons which have been extensively studied in the literature,

see for example Sarkar and Schwartz (2009). Some of these include: asymmetric information, differences

in opinion or differential information, and increased proportion of impatient (relative to patient) traders.

Likewise, trade clustering can be the result of various market events, see Cartea and Jaimungal (2013a).

For instance, increases in market activity could be due to shocks to the fundamental value of the asset, or

the release of public or private information that generates an increase in trading (two-sided or one-sided)

until all information is impounded in stock prices. However, judging by the sharp rise of AT over the last

ten years and the explosion in volume of submissions and order cancelations it is also plausible to expect

that certain AT strategies that generate trade clustering are not necessarily motivated by the reasons

mentioned above.

The profitability of these low latency AT strategies depends on how they interact with the dynamics of

the LOB, and, more importantly, how these AT strategies coexist with each other. The recent increase in

the number of orders and frequency of LOB updates shows that fast traders are responsible for most of

the market activity and it is very difficult to link news arrival or other classical ways of explaining motives

for trade to the activity one observes in electronic markets. Superfast algorithms make trading decisions

in split milliseconds. This speed, and how other superfast traders react, makes it difficult to link trade

initiation to private or public information arrival, a particular type of trader, liquidity shock, or any other

market event.

Therefore, as part of the model we develop here, we propose a reduced-form model for the intensity of

the arrival of market sell and buy orders. The novelty we introduce is to assume that MOs arrive in two

types. The first type of orders are influential orders which excite the market and induces other traders
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to increase the amount of MOs they submit. For instance, the arrival of an influential market sell order

increases the probability of observing another market sell order over the next time step and also increases

(to a lesser extent) the probability of a market buy order to arrive over the next time step. On the other

hand, when non-influential orders arrive the intensity of the arrival of MOs does not change. This reflects

the existence of trades that the rest of the market perceives as not conveying any information that would

alter their willingness to submit MOs. In this way, our model for the arrival of MOs is able to capture

trade clustering which can be one-sided or two-sided and allow for the activity of trading to show the

positive feedback that algorithmic trades seem to have brought to the market environment. Multivariate

Hawkes processes have recently been used in the financial econometrics literature to model clustering in

trade arrival and changes in the LOB, see, e.g., Large (2007), Bowsher (2007) and Toke (2011), however,

this article is the first to incorporate such effects into optimal control problems related to AT.

In our model the arrival of trades also affects the midprice and the LOB. The arrival of MOs is generally

regarded as an informative process because it may convey information about subsequent price moves and

adverse selection risks.4 Here we assume that the dynamics of the midprice of the asset are affected

by short-term imbalances in the amount of influential market sell and buy orders – in particular, these

imbalances have a temporary effect on the drift of the midprice.

Moreover, in our model the arrival of influential orders have a transitory effect on the shape of both sides

of the LOB. More specifically, since some market makers anticipate changes in the intensity of both the

sell and buy MOs, the shape of the buy and sell side of the book will also undergo a temporary change

due to market makers repositioning their LOs in anticipation of the increased expected market activity

and adverse selection risk.

We test our model using simulations where we assume different types of HFTs who are mainly characterized

by the quality of the information that they are able to process and incorporate into their optimal postings.

We show that those HFTs who incorporate predictions of short-term price deviations in their strategy

will deliver positive expected profits. At the other extreme we have the HFTs that are driven out of the

market because their LOs are picked off by better informed traders and because they cannot profit from

directional strategies which are also based on short-lived predictable trends. We also show that in between

these two cases, those HFTs who cannot execute profitable directional strategies (and are systematically

4For instance, periods where the amount of market buy orders is much higher than the amount of market sell orders could
be regarded as times where informed traders have a private signal and are adversely selecting market makers who are unaware
that they are providing liquidity at a loss, see Easley and O’Hara (1992).
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being picked off) can stay in business if they exert tight controls on their inventories. In our model these

controls imply a higher penalty on their inventory position which pushes the optimal LOs further away

from the midprice so the chances of being picked off by other traders are considerably reduced.

2. Arrival of MOs and Price Dynamics

Very little is known about the details of the strategies that are employed by AT desks or the more

specialized proprietary HF trading desks. Algorithms are designed for different purposes and to seek

profits in different ways, Bouchard et al. (2011). For example, there are algorithms that are designed to

find the best execution prices for investors who wish to minimize the price impact of large buy or sell

orders, Almgren and Chriss (2000), Kharroubi and Pham (2010), and Bayraktar and Ludkovski (2012)

while others are designed to manage inventory risk, Cartea and Jaimungal (2013b) and Guéant et al.

(2013). There are HF strategies that specialize in arbitraging across different trading venues whilst others

seek to profit from short-term deviations in stock prices. And finally, there are trading algorithms that

seek to profit from providing liquidity by posting bids and offers simultaneously, Guilbaud and Pham

(2013b). In previous works on algorithmic trading in LOBs, the midprice is assumed independent of MOs,

and MOs arrive at Poisson times. Our work differs significantly in that we allow for dependence between

MOs, the LOB dynamics and midprice moves.

In the LOB, LOs are prioritized first according to price and then according to time.5 Thus, based on the

price/time priority rule the LOB stacks on one side all buy orders (also referred to as bids) and on the

other side all sell orders (also referred to as offers). The difference between the best offer and best bid is

known as the spread and their mean is referred to as the midquote price. Another dimension of the book

is the quantities on the sell and buy side for each price tick which give ‘shape’ to the LOB.

The HF trading strategy we develop here is designed to profit from the realized spread where we allow the

HFT to build inventories. To this end, before we formalize the HFT’s optimization problem, we require

a number of building blocks to capture the most salient features of the market dynamics.6 Since the

HFT maximizes expected terminal wealth over a finite horizon T , while being penalized for holding large

5This is the case for most exchanges. Some exchanges use prorata order books – where MOs are matched with all traders
posting at the touch proportional their posted volume, see, e.g., Guilbaud and Pham (2013a) – or other alternatives such as
Broker priority in Scandinavian markets.

6Although we focus on a HF trading market making algorithm, the framework we develop here can be adapted for other
types of AT strategies.
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inventories, and she is continuously repositioning buy and sell LOs, the success of the strategy depends on

optimally picking the ‘best places’ in the bid and offer queue which requires us to model: (i) The dynamics

of the fundamental value of the traded stock, (ii) the arrival of market buy and sell orders, and (iii) how

MOs cross the resting orders in the LOB. In this section we focus on (i) and (ii), then in Section 3 we

discuss (iii) and after that we present the formal optimal control problem that the HFT solves.

2.1. Price Dynamics

We assume that the midprice (or fundamental price) of the traded asset follows

dSt = (υ + αt) dt+ σ dWt , (1)

where Wt is a P-standard Brownian Motion, and S0 > 0 and σ > 0 are constants.7 The drift of the

midprice is given by a long-term component υ and by a short-term component αt which is a predictable

zero-mean reverting process. Since we are interested in HF trading, our predictors are based on order

flow information where we allow for feedback between MO events and short-term-alpha. In the rest of the

paper we assume that υ = 0 because the HF strategies we develop are for very short-term intervals.

Section 4 gives details of the dynamics of the process αt, this element of the model plays a key role in

the determination of the HF strategies we develop because it captures different features that we observe

in the dynamics of the midprice. For instance, it captures the price impact that some orders have on the

midprice as a result of: a burst of activity on one or both sides of the market, orders that walk the LOB,

etc. Furthermore, we also know that a critical component of HF trading is the ability that HFTs have

to predict short-term deviations in prices so that they make markets by taking advantage of directional

strategies based on short-term predictions (i.e. they are able to predict short-term-alpha) whilst at the

same time allowing them to reposition stale or submit new quotes to avoid being picked off by other

market participants trading on short-term-alpha – avoid being adversely selected.

7Unless otherwise stated, all random variables and stochastic processes are on the completed filtered probability space
(Ω,FT ,F,P) with filtration F = {Ft}0≤t≤T and where P is the real-world probability measure. What generates the filtration
will be defined precisely in Section 5. Simply put, it will be generated by the Brownian motions Wt and Bt (introduced
later), counting processes corresponding to buy/sell market and filled LOs, news events and the indicator of whether a trade
is influential or not.
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(a) Arrival of IBM market buy orders
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(b) Arrival of IBM market sell orders

Figure 1: IBM MOs. Historical running intensity versus smoothed fitted intensity (restricted to ρ = 1) using a 1 second
sliding window for IBM for a 3 minute period, between 3.30 and 3.33 pm, February 1 2008.

2.2. Mutually-exciting incoming market order dynamics

Order flow tends to fluctuate throughout the day, indeed as a motivating example, Figure 1 shows the

historical intensity of trade arrival for IBM over a three minute period (starting at 3.30pm, February 1

2008). The historical intensities are calculated by counting the number of buy and sell MOs over the

last 1 second. The fitted intensities are computed using our model (see Equation (2)) under the specific

assumption that all trades are influential – see Appendix A for more details. From the figures we observe

that MOs may arrive in clusters and that there are times when the markets are mostly one-sided (for

instance the first 60 seconds of trading is more active on the buy side than on the sell side) and that these

bursts of activity die out rather quickly and revert to around 5 events per second.

Why are there bursts of activity on the buy and sell sides? It is difficult to link all these short-lived increases

in the levels of activity to the arrival of news. One could argue that trading algorithms, including HF,

are also responsible for the sudden changes in the pace of the market activity, including bursts of activity

in the LOB, and most of the times these algorithms act on information which is difficult to link to public

news. Thus, here we take the view that some MOs generate more trading activity in addition to the usual

effect of news increasing the intensity of MOs.

In our model MOs arrive in two types. The first are influential orders which excite the state of the market

and induce other traders to increase their trading activity. We denote the total number of arrivals of

influential sell/buy MOs up to (and including) time t by the processes {M−t , M
+
t }. The second type of
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Figure 2: Sample path of MO activity rates. When influential trades arrive, the activity of both buy and sell orders increase
but by differing amounts. Circles indicate the arrival of an influential MO, while squares indicate the arrival of non-influential
trades.

orders are non-influential orders. These orders do not excite the state of the market. We denote the

total number of arrivals of non-influential sell/buy MOs up to (and including) time t by the processes

{M̃−t , M̃
+
t }. Note that the type indicator of an order is not an observable. Rather, all one can observe is

whether the market became more active after that trade. Therefore we assume that, conditional on the

arrival of an MO, the probability that the trade is influential is a constant ρ ∈ [0, 1].

Thus, we model the intensity of sell, λ−t , and buy, λ+t , MOs by assuming that they solve the coupled

system of stochastic differential equations:

Assumption 1. The market sell/buy order arrival rates (λ−t , λ
+
t ) solve the coupled system of SDEs

dλ−t = β(θ − λ−t )dt+ η dM
−
t + ν dM

+
t , (2a)

dλ+t = β(θ − λ+t )dt+ η dM
+
t + ν dM

−
t , (2b)

where, as previously stated, M
+
t and M

−
t are the total number of influential buy and sell orders up until

time t. Moreover, β, θ, η, ν are non-negative constants satisfying the constraint β > ρ(η + ν).

MOs are mutually-exciting since their arrival rates λ± jump upon the arrival of influential orders (note

that the arrival of non-influential orders do not affect λ±). If the influential MO is a buy (so that a sell

LO was lifted), the jump activity on the buy side increases by η while the jump activity on the sell side

increases by ν, and similarly when the MO is a sell. Typically one would expect ν < η so that jumps on

the opposite side of the book are smaller than jumps on the same side of the book (this bears out in the

calibration as well as in the moving window activities reported in Figures 1).
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Trading intensity is mean reverting. Jumps in activity decay back to its long run level of θ at an exponential

rate β. Figure 2 illustrates an intensity sample path. The lower constraint β > ρ(η + ν) is required for

the intensity processes to be ergodic. To see this, define the mean future activity rate m±t (u) = E[λ±u |Ft]

for u ≥ t. For the processes λ±t to be ergodic, m±t (u) must remain bounded as a function of u, for each t,

and the following Lemma provides a justification for the constraint.

Lemma 1. Lower Bound on Mean-Reversion Rate. The mean future rate m±t (u) remains bounded

for all u ≥ t if and only if β > ρ(η + ν). Furthermore,

lim
u→∞

m±t (u) = A−1ζ , where A =

β − ηρ −νρ

−νρ β − ηρ

 and ζ =

βθ
βθ

 .

The intuition for the constraint is that when an MO arrives the activity will jump either by η or by ν

and this occurs with probability ρ. Further, since both sell and buy influential orders induce mutual-

excitations, the decay rate β must be strong enough to compensate for both jumps to pull the process

towards its long-run level of θ.

News events may also induce increases in trading activity and incorporating them into the analysis is

straightforward, e.g., by adding an exogenous counting process which induces jumps in activity at the

time of news arrivals. To keep the modeling to a minimal, however, we opt to exclude them in our

analysis.

3. Limit Quote Arrival Dynamics and Fill Rates

The LOB can take on a variety of shapes and changes dynamically throughout the day, see Roşu (2009)

and Cont et al. (2010). MOs walk the book until all the volume specified in the order is filled. LOs in

the tails of the LOB are less likely to be filled than those within a couple of ticks away from the midprice

St. The decision where to post limit buy and sell orders depends on a number of characteristics of the

LOB and on the MOs. Some of the LOB features are: shape of the LOB, resiliency of the LOB, and

how the LOB changes in between the arrival of MOs. These features, combined with the size and rate

of the incoming MOs, determine the fill rates of the LOs. The fill rate is the rate of execution of a LO.

Intuitively, a high (low) fill rate indicates that a LO is more (less) likely to be filled by an MO.
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Here we model the fill rate facing the HFT in a general framework where we allow the depth and shape

of the book to fluctuate. The fill rate depends on where the HFT posts the limit buy and sell orders,

that is at St − δ−t and St + δ+t respectively, where δ± denotes how far away from the midprice the orders

are posted. Note, the agent continuously adjusts their posting relative to the midprice, hence, it is not

possible for the midprice to move through the agent’s posts. Rather, fills occur when MOs arrive and

reach the level that the agent is posted at. This is in line with how a number of other authors have

modeled optimal postings and fill probabilities as in Ho and Stoll (1981), Avellaneda and Stoikov (2008),

Bayraktar and Ludkovski (2012), Cartea and Jaimungal (2013b) and Guéant et al. (2013). This approach

can be viewed as a reduced form one, in contrast to models which focus on modeling the dynamics of

each level of the LOB, together with MO arrivals (see, e.g., Roşu (2009) and Cont et al. (2010)). In all

of the reduced form approaches when an MO arrives it walks through the LOB and the probability that

the HFT’s limit order is filled is a (static) function of the posted depth δ± and it is also assumed that

filled MOs do not affect the shape of the LOB. In our approach however, we allow fill probabilities to be

stochastic due to changes in the LOB which result from the arrival of MOs.

Assumption 2. The fill rates are of the form Λ±t , λ±t h±(δ;κt), where the non-increasing function

h±(δ;κt) : R → [0, 1] is C2 in δ (uniformly in t for κt ∈ Rn, fixed ω ∈ Ω), and lim
δ→∞

δ h±(δ;κt) = 0 for

every κt ∈ Rn. Moreover, the functions h±(δ;κt) satisfy: h±(δ;κt) = 1 for δ ≤ 0, κt ∈ Rn.

Assumption 2 allows for very general dynamics on the LOB through the dependence of the fill probabilities

(FPs) h±(δ;κt) on the process κt. The FPs can be viewed as a parametric collection with the exponential

class h±(δ;κt) = e−κ
±
t δ
±

and power law class h±(δ;κt) = (1 + (κ±t δ
±)α)−1 being two prime examples.

The process κt introduces dynamics into the collection of FPs reflecting the dynamics in the LOB itself.

The differentiability requirements in assumption 2 are necessary for the asymptotic expansions we carry

out later on to be correct. The limiting behavior for large δ± implies that the book (volume) thins out

sufficiently slowly such that the FPs decay sufficiently fast (faster than linear) so that it is not optimal to

place orders infinitely far away from the midprice. Finally, the requirement that h±(δ;κt) = 1 for δ ≤ 0

and ∀κt ∈ Rn is a financial one. A trader wanting to maximize her chances of being filled the next time

an MO arrives, must post the LOs at the midprice, i.e. δ± = 0, or she can also cross the midprice, i.e.

δ± < 0. In these cases we suppose that the fill rate is Λ±t = λ±t , i.e. it equals the rate of incoming MOs.

This assumption makes crossing the midprice a suboptimal decision because the trader cannot improve

the arrival rate of MOs (since Λ±t is constant when δ± ≤ 0), thus she will always post LOs that are

δ± ≥ 0 away from the midprice. Furthermore, this condition is more desirable than explicitly restricting
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the controls δ± to be non-negative, since it is not necessary to check the boundary condition at δ± = 0;

it will automatically be satisfied. Finally, we have the added bonus that the optimal control satisfies the

first-order condition.

Observe that if MO volumes are iid, then the κ±t processes can be interpreted as parameters directly

dictating the shape of the LOB. In particular, if the MO volumes are iid exponentially distributed and

the shape of the LOB is flat, then the probability that a LO at price level St± δ±t is executed (given that

an MO arrives) is equal to e−κ
±
t δ
±
t . Consequently, κ±t can be interpreted as depth of LOB at each price

level. In order to satisfy the C1 condition at δ± = 0 and the condition that h±(δ,κt) = 1 for δ± ≤ 0, it is

necessary to smooth the exponential function at δ = 0. This is always possible though, since there exists

C2 functions for which the L2 distance to the target function is less than any positive constant.

Assumption 3. The dynamics for κt satisfy

dκ−t = ξ(ϑ− κ−t ) dt+ ηκ dM
−
t + νκ dM

+
t , (3a)

dκ+t = ξ(ϑ− κ+t ) dt+ νκ dM
−
t + ηκ dM

+
t , (3b)

where ηκ and νκ are non-negative constants and ϑ and ξ are strictly positive constants.

Assumption 3 is a specific modeling assumption on κt which allows for incoming influential MOs to have

an impact on the FPs. An increase (decrease) in the fill rate can be due to two main reasons: (i) a decrease

(increase) in LOB depth or (ii) an increase (decrease) in the distribution of MO volumes (in a stochastic

dominance sense). This is a one-way effect because influential MOs cause jumps in the κt process, but

jumps in the FP do not induce jumps in MO arrivals. While it is possible to allow such feedback, empirical

investigations (such as those in Large (2007)) demonstrate that the incoming MOs influence the state of

the LOB and not the other way around. The mean-reversion term draws κ±t to the long-run mean of ϑ

so that the impact of influential orders on the LOB is only temporary. Typically, we expect that the rate

of mean-reversion ξ for the LOB to be slower than the rate of mean-reversion β of the MO activity. In

other words, the impact of influential orders persists in the LOB on a longer time scale compared to their

effect on MO activity.

Moreover, immediately after an influential market buy/sell order arrives the probability that a LO at

price level St ± δ±t is executed is, for the same δ±, smaller than the probability of being filled before

the influential order arrived. The intuition is the following. Immediately after an influential MO arrives,
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Figure 3: Fill rates Λ± with κ+
t = 2, κ−t = 1, λ+

t = 0.75 and λ−t = 1. As κ±t evolve, the fill rate shape changes, while the
MO activity rates λ± modulate the vertical scale. The maximum fill rate is achieved at δ = 0.

market participants react in anticipation of the increase of market activity they will face and decide to

send LOs to the book. Since many market participants react in similar way, the probability of LOs being

filled, conditional on an MO arriving, decreases.8

Figure 3 illustrates the shape of the fill rates at time t describing the rate of arrival of MOs which fill LOs

placed at price levels St ± δ±t . Notice that these rates peak at zero spread at which point they are equal

to the arrival rate of MOs. In the figure these rates are asymmetric and decay at differing speeds because

we have assumed different parameters for the buy and sell side, κ+t = 2, κ−t = 1, λ+t = 0.75 and λ−t = 1.

In general these curves will fluctuate throughout the day.

4. Short-Term-Alpha Dynamics: directional strategies and adverse selection

The actions of market participants affect the dynamics of the midprice via activity in the LOB and/or

the execution of market buy and sell orders. For instance, the arrival of public information is impounded

in the midprice of the asset as a result of new MOs and the arrival and cancellation of LOs. Similarly,

bursts of activity in buy and/or sell MOs, which are not necessarily the result of the arrival of public

information, has market impact by producing momentum in the midprice.

As discussed above, a great deal of the strategies that HFTs employ are directional strategies that take

8It is also possible to have markets where, conditional on the arrival of an MO, the probability of a LO being filled increases
immediately after the arrival of an influential order. We can incorporate this feature in our model. Note also that in our
general framework, immediately after the influential buy/sell MO arrives, the intensities λ± increase and the overall effect of
an influential order on the fill rates Λ± = λ±t h±(δ,κt) is ambiguous when λ±t and h±(δ,κt) move in opposite directions after

the arrival of an influential order, for example when h±(δ,κt) = e−κ
±
t δ

±
t .
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advantage of short-term price deviations in two ways. First, it enables HFTs to exploit their superior

knowledge of short-term trends in prices to execute profitable roundtrip trades, and second, because it

provides key information to update or cancel quotes that can be adversely picked off by other traders.

One can specify the dynamics of the predictable drift αt in many ways and this depends on the factors

that affect the short-term drift which for HF market making are based on order flow. Here we assume

that αt is a zero-mean-reverting process and jumps by a random amount at the arrival times of influential

trades. If the influential trade was buy initiated the drift will jump up, and if the influential trade was

sell initiated the drift will jump down. As such, we model the predictable drift as below.

Assumption 4. The dynamics for the predictable component of the midprice’s drift, αt, satisfy

dαt = −ζ αt dt+ σα dBt + ε+ dM
+
t − ε− dM

−
t (4)

where ε± are random variables representing the size of the sell/buy influential trade’s impact on the drift

of the midprice. Moreover, Bt denotes a Brownian motion independent of all other processes, and ζ, σα

are positive constants.

Slower traders will be adversely selected by better informed and quicker traders. For example, assume that

αt = 0 and an HFT ‘detects’ that the incoming buy MO is influential. Her optimal directional strategy is

to simultaneously send the following orders to the LOB: cancel her sell LOs, attempt to purchase the asset

(from a slower market participant), and send new sell LOs to unwind the transaction. Of course, these

types of trades do not guarantee a profit but on average these roundtrips will be profitable because the

HFT trades on short-term-alpha and profits from other traders who are not able to update their quotes in

time or who submit market sell orders right before prices increase. Finally, even if HFTs who are able to

trade on short-term-alpha miss a fleeting opportunity to execute a directional trade, they still benefit from

updating their stale quotes in the LOB to avoid being adversely selected by other market participants.

Given our chosen dynamics on the fill probability driving process κ±t in (3), the aforementioned effect

can be modeled by taking ηκ < νκ, which will induce more arrivals of limit buy (sell) quotes when an

influential market buy (sell) order arrives.

An alternative approach to adverse selection was introduced in Cartea and Jaimungal (2013b), whereby

MOs may induce an immediate jump in the midprice. The result of such direct adverse selection effects

was that the agent increases her optimal postings by the expected jump size. In this work, we will see a
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similar, but distinct, result whereby the agent adjusts her posting to protect herself against the potential

change in the midprice drift.

5. The High Frequency Trader’s Optimization Problem

So far, we have specified counting processes for MOs and dynamics of the LOB through the FPs; however,

we also require a counting process for the agent’s filled LOs. To this end, let N+
t and N−t denote the

number of the agent’s limit sell and buy orders, respectively, that were filled up to and including time t

and the process qt = N−t −N
+
t is the agent’s total inventory. Note that the arrival rate of these counting

processes can be expressed as Λ±t , λ±t h±(δ;κt), as in Assumption 2. Finally, the agent’s cash process

Xt (excluding the shares she currently holds) satisfies the SDE

dXt = (St + δ+t−) dN+
t − (St − δ−t−) dN−t , (5)

where δ±t− denotes the left-limit of the LO’s distance from the midprice, i.e., if the LO was filled, the agent

receives the quote that was posted an instant prior to the arrival of the MO.

5.1. Formulation of the HF investment problem

The HFT wishes to place sell/buy LOs at the prices St ± δ±t at time t such that the expected terminal

wealth is maximized whilst penalizing inventories.9 The HFT is continuously repositioning her LOs in the

book by canceling stale and submitting new LOs.10 Specifically, her value function is

Φ(t,Xt, St, qt, αt,λt,κt) = sup
(δ−u ,δ

+
u )t≤u≤T∈A

E
[
XT + qTST − φ

∫ T

t
q2s ds

∣∣∣∣ Ft] , (6)

where the supremum is taken over all (bounded) Ft-progressively measurable functions and φ penalizes

deviations of qt from zero along the entire path of the strategy. F t is the natural (and completed)

filtration generated by the collection of processes {St, αt, M±t = M
±
t + M̃±t , N

±
t } and the extended

filtration Ft = F t ∨σ{(Mu)0≤u≤t}. Note that λt and κt are progressively measurable with respect to this

9An alternative specification is to assume that the HFT is risk averse so that she maximizes expected utility of terminal
wealth. The current approach, however, is more akin to Almgren (2003) where quadratic variation, rather than variance, is
penalized which acts on the entire path of the strategy.

10In this setup the HFT’s LOs are always of the same size. An interesting extension is to also allow the HFT to choose the
amount of shares in each LO.
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expanded filtration. We will often suppress the dependence on many of the variables in Φ(·) and recall

that we assumed υ = 0 in the dynamics of the midprice. Note that Cartea et al. (2013) show that the

running penalty term in (6) can be interpreted as arising from the agent’s ambiguity aversion with respect

to the asset’s midprice.

The above control problem can be cast into a discrete-time controlled Markov chain as carried out in

Bäuerle and Rieder (2009). Classical results from Bertsekas and Shreve (1978) imply that a dynamic

programming principle holds and that the value function is the unique viscosity solution of the HJB

equation

(∂t + L) Φ + αΦs + 1
2σ

2 Φss

+λ− sup
δ−

{
h−(δ−;κ)

[
S−q,λΦ(t, x− s+ δ−)− Φ

]
+ (1− h−(δ−;κ))

[
S−λ Φ− Φ

]}
+λ+ sup

δ+

{
h+(δ+;κ)

[
S+q,λΦ(t, x+ s+ δ+)− Φ

]
+ (1− h+(δ+;κ))

[
S+λ Φ− Φ

]}
=φ q2,

(7)

with boundary condition Φ(T, ·) = x + qs, and the integro-differential operator L is the part of the

generator of the processes αt, λt, κt, and Z±t which do not depend on the controls δ±t . Explicitly,

L = β(θ − λ−)∂λ− + β(θ − λ+)∂λ+ + ξ(ϑ− κ−)∂κ− + ξ(ϑ− κ+)∂κ+ − ζ α∂α + 1
2σ

2
α∂αα . (8)

Moreover, we have introduced the following shift operators:

S±λ Φ = ρE
[
S±λ Φ

]
+ (1− ρ) Φ , S±qλΦ = ρE

[
S±qλΦ

]
+ (1− ρ)S±q Φ , (9a)

S±qλ = S±q S±λ , S±q Φ(t, x, s, q, α,λ,κ) = Φ(t, x, s, q ∓ 1, α,λ,κ) , (9b)

S+λ Φ(t, x, s, q, α,λ,κ) = Φ(t, x, s, q, α+ ε+,λ + (ν, η)′,κ + (νκ, ηκ)′) , (9c)

S−λ Φ(t, x, s, q, α,λ,κ) = Φ(t, x, s, q, α− ε−,λ + (η, ν)′,κ + (ηκ, νκ)′) , (9d)

where the expectation operators E[·] in (9a) are over the random variables ε±.

5.2. The Feedback Control of the optimal trading strategy

In general, an exact optimal control is not analytically tractable – two exceptions are the cases of an

exponential and power FPs where the optimal control admits exact analytical solutions as presented

in Appendix C.1. For the general case, we provide an approximate optimal control via an asymptotic

expansion which is correct to o (ς) where ς = max(φ, α,E[ε±]). In principle, the expansion can be carried
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to higher orders if so desired.

Proposition 2. Optimal Trading Strategy, Feedback Control Form. The value function Φ admits

the decomposition Φ = x + q s + g(t, q, α,λ,κ) with g(T, ·) = 0. Furthermore, assume that g(·) can be

written as an asymptotic expansion as follows

g(t, q, α,λ,κ) = g0(t, q,λ,κ) + α gα(t, q,λ,κ) + ε gε(t, q,λ,κ) + φ gφ(t, q,λ,κ) + o(ς) , (10)

with boundary conditions g·(T, ·) = 0 – note the subscripts on the functions g do not denote derivatives,

rather they are labels – and we have written E[ε±] = ε a± with ε constant. Then, the feedback controls of

the optimal trading strategy for the HJB equation (7) admit the expansion

δ±∗t = δ±0 + α δ±α + ε δ±ε + φ δ±φ + o(ς), (11)

where

δ±α = −B(δ±0 ;κ)
(
S±qλgα − S±λ gα

)
, (12a)

δ±ε = −B(δ±0 ;κ)
(
S±qλgε − S±λ gε ± ρ a

±
(
S±qλgα − S

±
λ gα

))
, (12b)

δ±φ = −B(δ±0 ;κ)
(
S±qλgφ − S±λ gφ

)
, (12c)

and the coefficient B(δ±0 ;κ) =
h′±(δ

±
0 ;κ)

2h′±(δ
±
0 ;κ)+ δ±0 h

′′
±(δ
±
0 ;κ)

. Moreover, δ±0 is a strictly positive solution to

δ±0 h
′
±(δ±0 ;κ) + h±(δ±0 ;κ) = 0. (13)

A solution to (13) always exists. Furthermore, the exact optimal controls are non-negative.

In the next subsection we use the optimal controls derived here to solve the nonlinear HJB equation

and obtain an analytical expressions for gα, gε, and gφ to obtain explicit expressions for the optimal

postings. Before proceeding we discuss a number of features of the optimal control δ±∗t given by (11).

The terms on the right-hand side of equation (11) show how the optimal postings are decomposed into

different components: risk-neutral (first term), adverse selection and directional (second and third), and

inventory-management (fourth term).
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The risk-neutral component, given by δ±0 , does not directly depend on: the arrival rate of MOs, short-

term-alpha, or inventories. It depends on the FPs. To see the intuition behind this result, we note that

a risk-neutral HFT, who does not penalize inventories, seeks to maximize the probability of being filled

at every instant in time. Therefore, the HFT chooses δ± to maximize the expected spread conditional on

an MO hitting or lifting the appropriate side of the book, i.e. maximizes δ± h±(δ±;κt). The first order

condition of this optimization problem is given by (13) where we see that λ± plays no role in how the LOs

are calculated.11

The optimal halfspreads are adjusted by the impact that influential orders have on short-term-alpha

through the term αt δ
±
α + ε δ±ε to reduce adverse selection costs and to profit from directional strategies.

An HFT that is able to process information and estimate the parameters of short-term-alpha will adjust

the halfspreads to avoid adverse selection and to profit from short-lived trends in the midprice. For

example, if short-term-alpha is positive the HFT’s sell halfspread is increased to avoid being picked off,

and at the same time the buy halfspread decreases to take advantage of the first leg of a directional

strategy by increasing the probability of purchasing the asset in anticipation of a price increase.

Finally, the fourth term is an inventory management component that introduces asymmetry in the postings

so that the HFT does not build large long or short inventories. This component of the halfspread is

proportional to the penalization parameter φ > 0 which induces mean reversion to the optimal inventory

position.

5.3. The asymptotic solution of the optimal trading strategy

Armed with the optimal feedback controls, our remaining task is to solve the resulting non-linear HJB

equation to this order in ς. The following Theorem contains a stochastic characterization of the asymptotic

expansion of the value function. This characterization can be computed explicitly in certain cases and

then plugged into the feedback control to provide the optimal strategies.

Theorem 3. Solving The HJB Equation. The solutions for gα, gε and gφ can be written as

11If there are multiple solutions to (13) the HFT chooses the δ± that yields the maximum of δ± h±(δ±;κt).
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gα = aα(t,λ,κ) + q bα(t) , (14a)

gε = aε(t,λ,κ) + q bε(t,λ) , (14b)

gφ = aφ(t,λ,κ) + q bφ(t,λ,κ) + q2 cφ(t) , (14c)

where

bα(t) = 1
ζ

(
1− e−ζ(T−t)

)
, (15a)

bε(t,λ) = ρE
[∫ T

t

(
a+ λ+u − a− λ−u

)
bα(u) du

∣∣∣∣ λt = λ

]
, (15b)

bφ(t,λ,κ) = 2E
[∫ T

t

{
h+0,u λ

+
u − h−0,u λ

−
u

}
(T − u) du

∣∣∣∣λt = λ, κt = κ

]
, and (15c)

cφ(t) = − (T − t) . (15d)

In the above, h±0,u = h±(δ±0,u;κ±u ) and we have written E[ε±] = εa±. Finally, the functions g0, aα, aε and

aφ do not affect the optimal strategy.

The asymptotic expansion of the optimal controls now follows as a straightforward corollary to Theorem 3.

Note that the functions bε can be computed explicitly and is reported in Appendix C.2. Moreover, under

some specific assumptions on the fill probabilities h± (e.g., if h± are exponential or power functions), the

function bφ can also be computed explicitly. Proposition 8 in Appendix C.3 provides a general class of

models (which includes the exponential and power cases) for which simple closed form results are derived

and the implications for the optimal limiting order postings have a very natural interpretation.

Corollary 4. Optimal LOs. The asymptotic expansion of the optimal controls to first order in ς is

(dependencies on the arguments have been suppressed for clarity)

δ±∗ = δ±0 +B(δ±0 ;κ±)

{
±S±λ

(
E
[∫ T

t
αu du

])
+ φ

(
±S±λ bφ + (1∓ 2q)(T − t)

)}
(16)

where δ±0 satisfies (13), and we have |δ±opt − δ∗±| = o(ς). Furthermore, the optimal controls max{δ±∗, 0}

are also of order o(ς).12

The expression for the optimal control warrants some discussion which goes beyond the discussion that

followed the general result in Proposition 2. The term δ±0 represents the action of a risk-neutral agent

12Note that the exact solution of the optimal control is non-negative as discussed in Assumption 2, but this is not necessarily
the case in the asymptotic solution, thus we write the optimal control as max{δ±∗, 0}.
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who is not aware or is not able to estimate the impact that influential MOs have on the stochastic drift

of the midprice (so she sets it to zero). The first term in the braces accounts for the expected change in

midprice due to the potential impact of orders on the midprice’s drift, the expected change to the arrival

of orders, and the Brownian component in the short-term-alpha dynamics, see (4). This term plays a

dual role in the optimal strategy: it corrects for the adverse selection effect and positions the quotes to

execute directional strategies. If the drift is positive, the agent posts further away from the midprice on

the sell side (adverse selection correction) and closer to the midprice on the buy side in anticipation of

upward price movements (directional strategy). When the drift is negative the interpretation is similar.

The term proportional to φ contains two terms. The first of these terms accounts for the asymmetry in

the arrival rates of MOs on the sell and buy sides, while the second term controls for inventories. Both

terms together help to induce mean reversion to an optimal inventory level which is not necessarily zero.

There are a number of special cases that are interesting to analyze. For instance, if E[ε±] = ε = 0

influential trades do not affect the short-term-alpha dynamics so in the optimal control only the fact that

αt reverts to zero, at the exponential speed ζ, is taken into account. Clearly, if αt > 0 the HFT’s sell

halfspread is increased to avoid selling an asset which is trending up in price, and for the same reason the

optimal buy halfspread decreases to increase the probability of purchasing the asset in anticipation of a

price increase.

In addition, the expression for optimal control simplifies considerably when (i) the impact of influential

orders on the stochastic drift is symmetric in the sense that ε+ = E[ε+] = E[ε−] = ε− := ε; (ii) the

parametric shape of the LOB FPs are symmetric, in the sense that the class of functions h+ and h−

are equal;13 and (iii) the fill probability at the risk-neutral optimal control is independent of the scale

parameters,14 i.e, h±(δ±0 ,κ) = const. Under these assumptions, the two important (non-trivial) quantities

which appear in the optimal spreads in Equation (16) simplify to

E
[∫ T

t
αu du

]
= ε

ρ

ζ
(λ+t − λ

−
t )

{
1− e−β̂(T−t)

β̂
− e−ζ(T−t) − e−β̂(T−t)

β̂ − ζ

}
+ αt

1− e−ζ(T−t)

ζ
, (17a)

bφ = 2h (λ+t − λ
−
t )

{
1

β̂
(T − t)− 1− e−β̂(T−t)

β̂2

}
, (17b)

13This does not imply that the LOB is symmetric because the scale parameters κ±t will differ. For example, exponential

FPs e−κ
±
t δ

±
satisfy this requirement, even though the book may be significantly deeper on one side than the other.

14This condition is satisfied by (but not limited to) the exponential and power law FPs as discussed in examples 9 and 10.
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where β̂ = β − ρ(η − ν) and h = h±(δ±0 ,κ) = const. Both expressions contain terms proportional to the

difference in the MO activity on the buy and sell sides. If there are no influential orders, these will be

equal to their long-run levels and will therefore be zero. However, when influential orders arrive, the buy

and sell activities differ and the agent reacts to this order flow imbalance. Finally, it is straightforward to

see in this symmetric case (λ+t = λ−t ) that if ε = 0, the short-term-alpha component affects the optimal

posting only via the effect of the last term on the right-hand side of (17a).

6. High Frequency Market Making, Short-term-alpha and Directional Strategies

In this section we apply a simulation study of the HF strategy where MOs are generated over a period of

5 minutes. The HFT is rapidly updating her quotes in the LOB by submitting and canceling LOs which

are filled according to exponential FPs.15 The optimal postings are calculated using Corollary 4 and the

explicit form for bφ in Proposition 8. The processes λt, κt and αt are updated appropriately and the

terminal cash-flows are stored to produce the profit and loss (PnL) generated from these strategies.

To generate the PnL we assume that the final inventory is liquidated at the midprice with different

transactions costs per share: 1 basis point (bp) and 10 bps.16 In practice the HFT will bear some costs

when unwinding a large quantity which could be in the form of a temporary price impact (a consequence

of submitting a large MO) and by paying a fee to the exchange for taking liquidity in the form of an

aggressive MO. Finally, in each simulation the process is repeated 5, 000 times to obtain the PnLs of the

various strategies. More details on the simulation procedure are contained in Appendix D.

We analyze the performance of the HF market making strategy by varying the quality of the information

that the HFT has when calculating the optimal postings. The main difference between our scenarios is

whether the HFT is able to calculate the correct ρ which, conditional on the arrival of an MO, is the

probability that the trade is influential and whether they are able to estimate the correct dynamics of

short-term-alpha – all of them know the equations that determine λ±t and κ±t but do not necessarily know

the correct parameters. We contemplate six different types of HFTs:

1. Correct probability of influential event (ρ). The HFT uses her superior computing power to process

15The results for power FPs are very similar so in the interest of space we do not show them.
16The transaction costs are computed on a percentage basis and since the starting midprice in the simulations is $100,

these correspond to approximately 1 and 10 cents per share, respectively. In particular, qT shares are liquidated at a value
of qT (ST − ctrans sgn(qT )).
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information to estimate ρ and the other parameters that determine the dynamics of λ±t and κ±t .

Furthermore, we assume that the HFT may or may not be able to estimate the correct αt dynamics.

(a) Correct midprice drift (α) dynamics. This is our benchmark because we also assume that the

HFT is able to estimate the parameters of the αt process and adjust her postings accordingly.

(b) Zero midprice drift (α) dynamics. Here we assume that although the HFT is able to estimate

the correct ρ she assumes that short-term alpha is zero throughout the entire strategy.

2. High probability of influential event (ρ). At the other extreme we also have an HFT who cannot

distinguish between the type of MO and assumes that all orders are influential, ρ = 1. The jump

sizes in λ±t and κ±t are set so that the long-run means are λ±t = m±t (∞) and κ±t = m̃±t (∞).

(a) Incorrect midprice drift (α) dynamics. Because the HFT assumes that all orders are influential

she is not able to correctly predict short-term-alpha – she either overestimates or underestimates

the effect that MOs have on short-term-alpha because every time there is an incoming MO the

HFT will predict a jump in αt. The mean jump size parameter, ε, is also rescaled by the correct

ρ.

(b) Zero midprice drift (α) dynamics. The HFT assumes that short-term-alpha is always zero.

3. Low probability of influential event (ρ). At one extreme we have an HFT who cannot distinguish

between order type and assumes that all orders are non-influential, ρ = 0, and assumes that λ±t , κ±t

are constant and set at their long-run means: λ±t = m±t (∞), given in Lemma 1, and κ±t = m̃±t (∞),

given in Lemma 11.

(a) Incorrect midprice drift (α) dynamics. Because the HFT assumes that all orders are non-

influential she is not able to correctly predict short-term-alpha – she only observes the diffusion

components and not the jumps.

(b) Zero midprice drift (α) dynamics. The HFT assumes that short-term-alpha is always zero.

In all six cases, the data generating process (DPG) are identical and given by the full model where we

assume the following values for the parameters (unless otherwise stated): β = 60 and θ = 1 (speed and

level of mean reversion of intensity of MO arrivals), η = 40 and ν = 10 (jumps in λt upon the arrival of

influential MOs); ξ = 10 and ϑ = 50 (speed and level of mean reversion for the κt process), ηκ = 10 and

νκ = 25 (jumps in κt upon the arrival of influential MOs); υ = 0 (long-term component of the drift of the

midprice), σ = 0.01 (volatility of diffusion component of the midprice), ζ = 2 and σα = 0.01 (speed of

22



mean reversion and volatility of diffusion component of αt process); and finally ρ = 0.7 (probability of the

MO being influential). Moreover, ε± are both exponentially distributed with the same mean, E [ε±] = ε,

for the sell and buy impacts. In the simulations we consider two cases: ε = 0.04 and ε = 0.02.

In Tables 1 and 2 we show the Profit and Losses (PnL) that the HFTs face when executing the optimal

strategy. The difference between the two tables is the impact that influential orders have (ε = 0.04 and

ε = 0.02) on short-term-alpha. In both tables terminal inventories qT are liquidated at the midprice

ST and pick up a penalty of 1bps and 10bps per share. The tables show the results for different values

of the inventory-management parameter φ = {1 × 10−5 , 2 × 10−5 , 4 × 10−5}. For each value of φ we

show the mean and standard deviation of the six PnLs where the top row, for each φ, reports the three

PnLs resulting from: the benchmark HFT (who uses the correct ρ = 0.7), and the other two HFTs who

incorrectly specify the arrival of influential and non-influential MOs. For each φ the bottom row shows

the other three PnLs that result from assuming that the HFTs set αt = 0 throughout the entire strategy.

Case I: ε = 0.04, ρ = 0.7 and liquidation costs = 1bp

φ αt Bench. ρ = 1 ρ = 0

1× 10−5
Yes

mean 14.09 12.77 -4.34

(std) (6.98) (6.44) (3.00)

No
mean -3.81 -3.88 -4.32

(std) (2.83) (2.83) (2.94)

2× 10−5
Yes

mean 13.52 12.15 -2.80

(std) (5.44) (5.01) (2.21)

No
mean -1.57 -1.71 -2.80

(std) (2.07) (2.06) (2.17)

4× 10−5
Yes

mean 12.49 11.08 -1.24

(std) (4.28) (3.94) (1.60)

No
mean 0.24 0.06 -1.25

(std) (1.48) (1.48) (1.58)

Case II: ε = 0.04, ρ = 0.7 and liquidation costs = 10bp

φ αt Bench. ρ = 1 ρ = 0

1× 10−5
Yes

mean 13.32 12.05 -4.81

(std) (6.80) (6.29) (3.12)

No
mean -4.28 -4.34 -4.78

(std) (2.98) (2.98) (3.07)

2× 10−5
Yes

mean 12.87 11.55 -3.19

(std) (5.30) (4.90) (2.32)

No
mean -1.96 -2.10 -3.19

(std) (2.20) (2.19) (2.28)

4× 10−5
Yes

mean 11.94 10.58 -1.56

(std) (4.17) (3.85) (1.69)

No
mean -0.09 -0.27 -1.57

(std) (1.59) (1.59) (1.67)

Table 1: The mean and standard deviation of the PnL from the various strategies as the inventory-management parameter
φ increases, ε = 0.04, and final inventory liquidation costs are 1bps and 10bps per share. Recall that only the benchmark
HFT, who uses ρ = 0.7, is able to correctly specify the dynamics of short-term-alpha.

The tables clearly show that market making is more profitable if the HFTs incorporate in their optimal

strategies predictions of short-term-alpha – this is true even if the HFTs incorrectly specify the short-

term-alpha parameters. Moreover, when the mean impact of influential orders on αt is ε = 0.04, Table

1 clearly shows that HFTs who are not able to execute market making strategies based on predictable

trends in the midprice will be driven out of the market because their trades are being adversely selected

and because they are unable to profit from directional strategies – HFTs who omit short-term-alpha face

negative, or at best close to zero, mean PnLs. Table 2 shows that if the mean impact of influential orders

decreases to ε = 0.02, HFTs are able to subsist even if they do not use predictors of short-term-alpha when

making markets; however we believe that in practice HFTs will not survive if they are not able to trade
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Case III ε = 0.02, ρ = 0.7 and liquidation costs = 1bp

φ Bench. ρ = 1 ρ = 0

1× 10−5
Yes

mean 8.81 8.16 1.25

(std) (2.84) (2.60) (1.55)

No
mean 1.66 1.61 1.23

(std) (1.46) (1.47) (1.52)

2× 10−5
Yes

mean 8.29 7.63 1.84

(std) (2.23) (2.04) (1.15)

No
mean 2.55 2.48 1.80

(std) (1.09) (1.08) (1.13)

4× 10−5
Yes

mean 7.41 6.77 2.33

(std) (1.75) (1.60) (0.85)

No
mean 3.08 2.99 2.30

(std) (0.81) (0.80) (0.84)

Case IV ε = 0.02, ρ = 0.7 and liquidation costs = 10bps

φ Bench. ρ = 1 ρ = 0

1× 10−5
Yes

mean 8.16 7.57 0.79

(std) (2.75) (2.53) (1.69)

No
mean 1.19 1.15 0.77

(std) (1.62) (1.63) (1.67)

2× 10−5
Yes

mean 7.75 7.13 1.45

(std) (2.16) (1.99) (1.27)

No
mean 2.16 2.09 1.42

(std) (1.23) (1.22) (1.26)

4× 10−5
Yes

mean 6.95 6.35 2.00

(std) (1.70) (1.57) (0.95)

No
mean 2.75 2.66 1.98

(std) (0.92) (0.92) (0.95)

Table 2: The mean and standard deviation of the PnL from the various strategies as the inventory-management parameter
φ increases, ε = 0.02, and final inventory liquidation costs are 1bps and 10bps per share. Recall that only the benchmark
HFT, who uses ρ = 0.7, is able to correctly specify the dynamics of short-term-alpha.

on short-term-alpha to profit from directional strategies and to reduce the effects of adverse selection.17

The inventory-management parameter φ plays an important role in the performance of the HFT strategies.

Although the HFTs are maximizing expected terminal wealth (and not expected utility of terminal wealth),

they are capital constrained and their own internal risk-measures require them to penalize building large

positions. HFTs that wish to, or are required to, exert a tight control on their exposure to inventories

will prefer a high φ. Tables 1 and 2 show an interesting effect of φ on the PnL of the different strategies

that we study. If the HFT uses her predictions of short-term-alpha to make markets, increasing φ reduces

both the mean and standard deviation of the PnL. Thus, in these cases the tradeoff between mean and

standard deviation of profits is clear: those HFTs who trade on short-term-alpha are able to trade off

mean against standard deviation of PnL.

On the other hand, the effect of increasing φ on the PnL of HFTs that do not take into account short-term-

alpha is to increase the mean and to decrease the standard deviation of the PnL. The intuition behind

this result is the following. As we have shown, HFTs that do not trade using predictions of short-term-

alpha suffer from being picked off by better informed traders and are unable to boost their profits using

directional strategies. However, increasing φ makes their postings more conservative because, everything

else equal, the LOs are posted deeper in the LOB and this makes it more difficult for other traders to

pick off their quotes. Thus, by increasing φ the HFT reduces her exposure to adverse selection and this

explains why the mean PnL increases in φ. Finally, the standard deviation of the PnL decreases because

when φ increases the strategy induces very quick mean reversion of inventories to zero.

17We are grateful to an anonymous referee for pointing this out.
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Finally, we repeat the simulations by assuming that influential orders arrive with probability ρ = 0.3.

Table 3 shows the results when we assume that ε = 0.04 and ε = 0.02 and that final inventory liquidation

costs are 1bp. The results are qualitatively the same as those discussed above, except now the ρ = 0

agent performs significantly better, relative to the other agents (although still is the worst of the three

strategies). We also run simulations with different parameter choices and the benchmark HFT always

performs better than the other HFTs.

ε = 0.04, ρ = 0.3 and liquidation costs = 1bp

φ Bench. ρ = 1 ρ = 0

1× 10−5
Yes

mean 4.97 4.16 2.60

(std) (1.43) (1.19) (1.26)

No
mean 2.59 2.59 2.57

(std) (1.21) (1.22) (1.23)

2× 10−5
Yes

mean 4.79 4.01 2.70

(std) (1.11) (0.92) (0.94)

No
mean 2.78 2.74 2.67

(std) (0.91) (0.91) (0.92)

4× 10−5
Yes

mean 4.47 3.72 2.75

(std) (0.87) (0.71) (0.70)

No
mean 2.88 2.81 2.72

(std) (0.68) (0.69) (0.70)

ε = 0.02, ρ = 0.3 and liquidation costs = 1bp

φ Bench. ρ = 1 ρ = 0

1× 10−5
Yes

mean 4.69 4.34 3.86

(std) (0.81) (0.74) (0.80)

No
mean 3.87 3.85 3.83

(std) (0.77) (0.77) (0.78)

2× 10−5
Yes

mean 4.51 4.19 3.82

(std) (0.65) (0.59) (0.61)

No
mean 3.85 3.82 3.78

(std) (0.60) (0.60) (0.61)

4× 10−5
Yes

mean 4.19 3.91 3.66

(std) (0.53) (0.48) (0.49)

No
mean 3.71 3.68 3.63

(std) (0.48) (0.48) (0.48)

Table 3: The mean and standard deviation of the PnL from the various strategies as the inventory-management parameter φ
increases, ε = 0.04 and 0.02, and final inventory liquidation costs are 1bps per share. Recall that only the benchmark HFT,
who uses ρ = 0.3, is able to correctly specify the dynamics of short-term-alpha.

7. Conclusions

We develop an HF trading strategy where the HFT uses her superior speed advantage to process infor-

mation and to send orders to the LOB to profit from roundtrip trades over very short-time scales. One of

our contributions is to differentiate MOs between influential and non-influential. The arrival of influential

MOs increases MO activity and also affects the shape and dynamics of the LOB. On the other hand, when

non-influential MOs arrive they walk the LOB but have no effect on the demand or supply of shares in

the market.

Another contribution is to model short-term-alpha in the drift of the midprice as a zero-mean reverting

process which jumps by a random amount upon the arrival of influential MOs and news. Influential

buy and sell MOs induce a short-lived upward and downward trend in the midprice of the asset. This

specification allows us to capture the essence of HF trading: to exploit short-lived predictable opportunities

by the way of directional strategies, and to supply liquidity to the market taking into account adverse

selection costs.
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The trading strategy that the HFT employs is given by the solution of an optimal control problem where the

trader is constantly submitting and canceling LOs to maximize expected terminal wealth, whilst managing

inventories, over a short time interval T . The strategy shows how to optimally post (and cancel) buy and

sell orders and is continuously updated to incorporate information of the arrival of MOs, size and sign

of inventories, and short-term-alpha. The optimal strategy captures many of the key characteristics that

differentiate HFTs from other algorithmic traders: profit from directional strategies based on predicting

short-term-alpha; reduce exposure to LOs being picked off by better informed traders; and strong mean

reversion of inventories to an optimal level throughout the entire strategy and to zero at the terminal

date.

Our framework allows us to derive asymptotic solutions of the optimal control problem under very general

assumptions of the dynamics of the LOB. We test our model using simulations where we assume different

types of HFTs who are mainly characterized by the quality of the information that they are able to process

and incorporate into their optimal postings. We show that only those HFTs who incorporate predictions

of short-term price deviations in their strategy will deliver positive expected profits. The other HFTs are

driven out of the market because their LOs are picked off by better informed traders and because they

cannot profit from directional strategies which are also based on short-lived predictable trends. We also

show that those HFTs who cannot execute profitable directional strategies and are systematically being

picked off can stay in business if they exert tight controls on their inventories. In our model, these controls

imply a higher penalty on their inventory position which pushes the optimal LOs further away from the

midprice so the chances of being picked off by other traders are considerably reduced.

One aspect that we have left unmodeled is when is it optimal for the HFT to submit MOs. We know that

HFTs submit both aggressive and passive orders. Depending on short-term-alpha it might be optimal for

the HFT to submit aggressive orders (for one or both legs of the trade) to complete a directional strategy.

In our stochastic optimal control problem the HFT does not execute MOs, the best she can do is send LOs

at the midprice (zero spread) but this is no guarantee that the LO will be filled in time for the HF strategy

to be profitable. We leave for future research the optimal control problem where HFTs can submit both

passive and aggressive orders.

Finally, the mutual-exciting nature of our model captures other important features of strategic behavior

which include ‘market manipulation’. For example, algorithms could be designed to send MOs, in the hope

of being perceived as influential, to trigger other algorithms into action and then profit from anticipating

the temporary changes in the LOB and short-term-alpha. Market manipulation strategies are not new to
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the marketplace, they have been used by some market participants for decades, perhaps what has changed

is the speed at which these techniques are executed and the question is whether speed enhances the ability

to go undetected. Analyzing such strategies are beyond the scope of this paper.

Appendix A. Fitting the Model

Here we focus on the case when all MOs are influential. Calibrating and estimating the current state of activity in the general

model in an online manner is beyond the scope of this work and will be reported elsewhere.

When all MOs are influential (i.e., when ρ = 1), the path of the intensity process is fully specified (once the times at which

the buy and sell trades are specified). Consequently, the likelihood can be written explicitly, and a straightforward maximum

likelihood estimation (MLE) can be used (albeit it must be maximized numerically). To be specific, suppose {t1, t2, . . . , tn}

are a set of observed trade times (with tn ≤ T the time of the last trade) and {B1, B2, . . . , Bn} are buy/sell indicators, i.e., 0

if the trade is a market sell and 1 if the trade is a market buy. Then the hazard rates and their integral at an arbitrary time

t can be found by integrating (2a)-(2b) and are explicitly given by

λ±t = θ +

n∑
i=1

H±i e
−β(t−ti) and

∫ t

0

λ±u du = θ t+

n∑
i=1

H±i
1− e−β(t−ti)

β
, (A.1)

where H±i = (Bi η + (1−Bi) ν, Bi ν + (1−Bi) η). Finally, the log-likelihood

L = −2θ T −
n∑
i=1

{
Bi log(λ+

ti) + (1−Bi) log(λ−ti) + (η + ν)
1− e−β(T−ti)

β

}
. (A.2)

Maximizing this log-likelihood results in the MLE estimates of the model parameters, and upon back substitution into

Equation (A.1) provides the estimated path of activity. Integrating this activity over the last second, i.e.,
∫ t
t−1

λ±u du provides

us with a smoothed version of the intensity and shown in Figure 1 as the path labeled “Fitted”. This is directly comparable

to the one second historical intensity in Figure 1 labeled as “Historical”.

For the time window 3:30pm to 4:00pm on Feb 1, 2008 for IBM the estimated parameters are as follows:

β̂ = 180.05, θ̂ = 2.16, η̂ = 64.16, and ν̂ = 55.73 .

Notice that the spikes in the historical intensity are often above the fitted intensities. The reason for this difference is that,

here, the fitted intensities assume that all trades are influential (i.e., ρ = 1). Consequently, the size of the jump in intensities

must be smaller than the true jump size to preserve total mean activity of trades. When a full calibration is carried out –

in which ρ is not necessarily 1 and the influential/non-influential nature of the event must be filtered – the jump sizes are

indeed larger.
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Appendix B. Proof of Results

Appendix B.1. Proof of Lemma 1

Integrating both sides of (2), taking conditional expectation, applying Fubini’s Theorem, and then taking derivative gives

the following coupled system of coupled ODEs for m±t (u)

d

du

m−t (u)

m+
t (u)

+

β − ηρ −νρ

−νρ β − ηρ

m−t (u)

m+
t (u)

−
βθ
βθ

 =

0

0

 (B.1)

with initial conditions m±t (t) = λ±t . This is a standard matrix equation and, if A has no zero eigenvalues, admits the unique

solution m−t (u)

m+
t (u)

 = e−A(u−t)

λ−t
λ+
t

−A−1ζ

+ A−1ζ . (B.2)

Since A is symmetric, it is diagonalizable by an orthonormal matrix U. Furthermore, its eigenvalues are β−(η±ν)ρ. Clearly,

in the limit u→∞, mt(u) converges if and only if β − (η ± ν)ρ > 0 which implies β > (η + ν)ρ since η, ν, ρ ≥ 0.

The remaining case is if A has at least one zero eigenvalue. However, it is easy to see that in this case, the solution to (B.1)

has at least one of m±t (u) growing linearly as a function of u. Furthermore, if one eigenvalue is zero, then either β = (η−ν)ρ or

β = (η+ν)ρ, which lie outside the stated the bounds. Finally, if both eigenvalues are zero, then we must have β = ν = η = 0.

Once again outside of the stated bounds. �

Appendix B.2. Proof of Proposition 2

Applying the ansatz on the form on Φ, differentiating inside the supremum in (7) with respect to δ±, then expanding g using

the specified ansatz, writing δ±∗ = δ±0 +αδ±α + εδ±ε + φδ±φ + o(ς), and setting the resulting equation to 0 gives our first-order

optimality condition. To this order, the first-order conditions imply that

h±(δ±0 ) + δ±0 h
′
±(δ±0 ) + α

{
δα
(
h′′±(δ±0 ) + 2h′±(δ±0 )

)
+ h′(δ±0 )

(
S±qλgα − S±λ gα

)}
+ε
{
δε
(
h′′±(δ±0 ) + 2h′±(δ±0 )

)
+ h′±(δ±0 )

(
S±qλgε − S±λ gε +±ρ a± S±qλgα

)}
+φ
{
δφ
(
h′′±(δ±0 ) + 2h′±(δ±0 )

)
+ h′±(δ±0 )

(
S±qλgφ − S±λ gφ

)}
= o(ς) .

(B.3)

Observe that the Taylor expansion of h(δ) about δ0 requires the C2 regularity condition to keep the error of the correct order.

The C1 regularity condition ensures that the global maximizer satisfies (B.3). Setting the constant term in (B.3) to zero

yields (13). Setting the coefficients of α, ε and φ each separately to zero and solving for δα, δε and δφ results in (11). The

finiteness of the optimal control correct to this order is ensured by the last condition in Assumption 2.

The existence of a solution to (13) is clear by noticing that the solution to (13) is a critical point of the function δh(δ). The

critical point exists since δh(δ) is non-positive for δ ≤ 0, strictly positive on an open interval of the form (0, d) due to h ∈ C1

(since h > 0 in an open neighbourhood of δ = 0), and goes to 0 in the limit (when δ →∞) by Assumption 2.
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To see that the exact values of the optimal controls are non-negative, observe that the value function is increasing in x.

Therefore, Φ(t, x + δ, ·) < Φ(t, x, ·) for any δ < 0. Since the shift operators appearing in the argument of the supremum

are linear operators, and h(δ;κ) is bounded above by 1 and attains this maxima at δ = 0, the δ = 0 strategy dominates all

strategies which have δ < 0. �

Appendix B.3. Proof of Theorem 3

Inserting the expansion for g and the feedback controls (11) for δ into the HJB equation (7), and carrying out tedious but

ultimately straightforward expansions, to order ς, equation (7) reduces to

o(ς) = Dg0 + (λ+δ+0 h+(δ+0 ) + λ−δ−0 h−(δ−0 ))

+ α
{
q + (D − ζ) gα + λ+ h+(δ0)

[
S+
qλ − S+

λ

]
gα + λ− h−(δ0)

[
S−qλ − S−λ

]
gα
}

+ ε
{
Dgε + λ+ h+(δ0)

([
S+
qλ − S+

λ

]
gε + ρ a+ S+

qλgα
)

+λ− h−(δ0)
([
S−qλ − S−λ

]
gε − ρ a− S−qλgα

)}
+ φ

{
−q2 +Dgφ + λ+ h+(δ0)

[
S+
qλ − S+

λ

]
gφ + λ− h−(δ0)

[
S−qλ − S−λ

]
gφ
}
,

(B.4)

where D = ∂t+L and the boundary conditions g0(T, ·) = gα(T, ·) = gε(T, ·) = gφ(T, ·) = 0 apply. Clearly, g0 is independent of

q and, as seen in Proposition 2, does not affect the optimal strategy. Next, perform the following steps (i) set the coefficients

of α, ε and φ to zero separately; (ii) write gα, gε and gφ as in (14); and (iii) collect powers of q and set them individually to

zero;18 then one finds the following equations for the functions bα(t), bε(t,λ), bφ(t,λ,κ) and cφ(t):

0 = Dbα − ζ bα + λ+ [S+
λ − 1

]
bα + λ−

[
S−λ − 1

]
bα + 1, (B.5a)

0 = Dbε + λ+ [S+
λ − 1

]
bε + λ−

[
S−λ − 1

]
bε + ρ

(
λ+a+ − λ−a−

)
bα, (B.5b)

0 = Dbφ + λ+ [S+
λ − 1

]
bφ + λ−

[
S−λ − 1

]
bφ − 2h(δ0) (λ+ − λ−) cφ, (B.5c)

0 = Dcφ + λ+ [S+
λ − 1

]
cφ + λ−

[
S−λ − 1

]
cφ − 1 . (B.5d)

These equations, together with the boundary conditions that bα(T, ·) = bε(T, ·) = bφ(T, ·) = cφ(T, ·) = 0, admit, through a

Feynman-Kac argument, the solutions presented in (15). More specifically, we apply the Feynman-Kac formula in Lemma 5

to link the solution of the derived PIDE back to its stochastic representation, as presented in (15).

The functions aα, aε and aφ are independent of q and, since the optimal spreads given in (12) contain difference operators in

q which vanish when the difference operators act on functions independent of q, do not influence the optimal strategy. �

18Note that this step is not an asymptotic expansion in q, rather it is exact given the prescribed expansion in the other
parameters.
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Appendix B.4. Proof of Corollary 4

Applying Equation (14) for gα, gε and gφ in Theorem 3 to Equations (11) and (12) of Proposition 2 and using the fact that

the a, b and c functions are all independent of q, after some tedious computations, δ∗± reduces to

δ±∗ = δ±0 +B(δ±0 ;κ±)
{
±α bα + ε

(
±S±λ bε + ρ a± bα

)
+ φ

(
±S±λ bφ + (1∓ 2q)(T − t)

)}
.

Next, observing that ±α bα + ε
(
±S±λ bε + ρ a± bα

)
= ±S±λ

(
E
[∫ T
t
αu du

])
, we find (16). Finally, let δ±opt denote the exact

optimal controls. Using Proposition 2 we have that δ±opt is non-negative and |δ∗ − δ±opt| = o(ς) therefore,

∣∣max{δ±∗, 0} − δ±opt
∣∣ ≤ ∣∣δ±∗ − δ±opt∣∣ = o(ς) ,

and we are done. �

Appendix B.5. Feynman-Kac Forumla for Jump Diffusions

Let Xt be a jump diffusion on Rk with P-generator L. Suppose that some function u(t, x) satisfies the following PIDE with

boundary condition:  (∂t + L)u(t, x) + f(t, x) = V (t, x)u(t, x)

u(x, T ) = ϕ(x)
(B.6)

Lemma 5. Feynman-Kac Formula. The solution to (B.6) has the following stochastic representation:

u(t, x) = EP

 T∫
t

e
−
s∫
t
V (z,Xz)dz

f(s,Xs)ds+ e
−
T∫
t
V (z,Xz)dz

ϕ(XT )

∣∣∣∣∣∣Xt = x

 (B.7)

Proof. Suppose u(t, x) is a solution to (B.6) and consider the process

Y (r,Xr) :=

r∫
t

e
−
s∫
t
V (z,Xz)dz

f(s,Xs)ds+ e
−
r∫
t
V (z,Xz)dz

u(r,Xr).

It then follows that

Et,x [Y (T,XT )− Y (t,Xt)] = Et,x

 T∫
t

e
−
r∫
t
Vz dz

{fr + (∂r + L)ur − Vr ur} dr

 = 0.
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The first equality is true by Dynkin’s Formula. The second equality is due to the condition in (B.6). Hence, we have

u(t, x) = Y (t, x) = Et,x [Y (t,Xt)] = Et,x [Y (T,XT )]

= Et,x

 T∫
t

e
−
s∫
t
V (z,Xz)dz

f(s,Xs)ds+ e
−
T∫
t
V (z,Xz)dz

u(T,XT )


= Et,x

 T∫
t

e
−
s∫
t
V (z,Xz)dz

f(s,Xs)ds+ e
−
T∫
t
V (z,Xz)dz

ϕ(XT )

 .
�

Appendix C. Some Explicit Formulae

This appendix contains several explicit formulae for the optimal spreads as well as quantities that feed into the optimal

spreads.

Appendix C.1. Exact Optimal Trading Strategy

Although an exact optimal control is not analytically tractable in general, the feedback control form for the cases of exponential

and power-law FPs can be obtained within our modeling framework.

Proposition 6. Exact Optimal Controls for Exponential and Power-Law. Suppose that the scale parameter process

κ±t is bounded away from zero almost surely. More specifically, assume that P
[
inft∈[0,T ] κ

±
t > 0

]
= 1.

1. If h±(δ;κ) = e−κ
±δ for δ > 0, then the feedback control of the optimal trading strategy for the HJB equation (7) is

given by

δ±t = max

{
1

κ±
−
{
S±qλg − S±λ g

}
, 0

}
. (C.1a)

2. If h±(δ;κ) = (1 +κ±δ)α
±

for δ > 0, then the feedback control of the optimal trading strategy for the HJB equation (7)

is given by

δ±t = max

{
α

α− 1

(
1

κ±
−
{
S±qλg − S±λ g

})
, 0

}
. (C.1b)

Here, the ansatz Φ = x+ q s+ g(t, q, α,λ,κ) with boundary condition g(T, ·) = 0 has been applied. Furthermore, the solutions

in (2) are unique.

Proof. Applying the first order conditions to the supremum terms and using the specified ansatz leads, after some simpli-

fications, to the stated result. We show this in detail for δ− in (C.1a) only as the other cases are analogous. The relevant
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supremum term in the HJB equation in (7) simplifies to, after applying the ansatz Φ = x+ q s+ g(t, q, α,λ,κ),

e−δ
−κ− [

S−λ g − g + δ−
]

+ (1− e−δ
−κ−

)
[
S−λ g − g

]
. (C.2)

Differentiating (C.2) with respect to δ− and setting the resulting expression equal to zero yields (C.1a). Checking the second

derivative of (C.2) verifies that this point is in fact a local maximum. If this point is negative, then the optimal δ− is δ− = 0

by Assumption 2.

Uniqueness is trivial. �

Appendix C.2. Explicit Computation of bε

Rather than computing bε directly, it is more convenient to compute the expected integrated drift and then identify the

appropriate terms. To this end we have the following result.

Proposition 7. Expected Integrated Drift. The expected integrated drift is given by the expression

E
[∫ T

t

αs ds

∣∣∣∣λt = λ, αt = α

]
= ε bε(t,λ) + α bα(t) (C.3)

where ε bε(t,λ) = A(t) + λ ·C(t) and

A(t) = ζ′ ·B(t) , (C.4a)

B(t) =
ρ

ζ

{
A−1

(
(T − t) I−A−1

(
I− e−A(T−t)

))
−(A− ζ I)−1

(
bα(t) I−A−1

(
I− e−A(T−t)

))}
εa , (C.4b)

C(t) =
ρ

ζ

{
A−1

(
I− e−A(T−t)

)
− (A− ζ I)−1

(
e−ζ(T−t) I− e−A(T−t)

)}
εa . (C.4c)

Moreover, a = (−a−, a+)′ and ζ = (βθ, βθ)′.

Proof. Denoting f(t, α,λ) = E
[∫ T

t
αs ds

∣∣∣λt = λ, αt = α
]
, we have, through a Feynman-Kac theorem, that f satisfies the

PDE

(∂t + L)f + λ+ (S+
λ f − f

)
+ λ−

(
S−λ f − f

)
+ α = 0 , (C.5)

where the infinitesimal generator of α and λ is

L =β(θ − λ−)∂λ− + β(θ − λ+)∂λ+ − ζ α∂α + 1
2
σ2∂αα .

Substituting the affine ansatz f = A(t)+λC(t)+α bα(t) into the PDE, subject to the boundary conditions A(T ) = C(T ) = 0,

leads to the system of coupled ODEs:  ∂tA(t) + ζ′ ·C(t) = 0 ,

∂tC(t)−AC(t) + ρ bα(t) εa = 0 .
(C.6)
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The solution of this coupled system is given by (C.4a) - (C.4c). The assertion that A(t) + λ ·C(t) = ε bε with bε provided

in (15b) can be confirmed by (i) writing down the PDE which the function bε satisfies, (ii) note that it admits an affine

ansatz Aε(t) +λ ·Cε(t), and (iii) the ODEs that Aε(t) and Cε(t) satisfy are the same ODEs as A(t) and C(t) with the same

boundary conditions. Uniqueness then implies they are equal. �

Appendix C.3. Computing bφ when Risk-Neutral Fill Probabilities are Constants

Closed form expressions for the function bφ can only be derived under further assumptions on the FPs h±(δ;κ). As a

motivating factor, note that both exponential and power law FPs have the property that h±(δ±0 ;κ) = const., irrespective

of the dynamics on the shape parameter κ±. This leads us to investigate the larger class of models for which h±(δ±0 ;κ) are

constant. Under these assumptions, the following proposition provides an explicit form for the function bφ.

Proposition 8. Explicit Solution for bφ(t,λ,κ). If h±(δ±0 ;κ) = h± are constants P-a.s., then the function bφ(t,λ,κ) is

independent of κ, and is explicitly given by

bφ(t,λ) = 2ξ′
{(

A−1(T − t)−A−2
(
I− e−A(T−t)

))[
λ−A−1ζ

]
+ 1

2
(T − t)2 A−1ζ

}
, (C.7)

where I is the 2× 2 identity matrix and ξ = (−h−, h+)′.

Proof. Note that E
[∫ T
t
λ±u (T − u) du|Ft

]
=
∫ T
t

E
[
λ±u |Ft

]
(T − u) du =

∫ T
t
m±t (u) (T − u) du. Using the form of m±t (u)

provided in (B.2) and integrating over u implies that

∫ T

t

mt(u)(T − u) du =
(
A−1(T − t)−A−2

(
I− e−A(T−t)

)) (
λt −A−1ζ

)
+ A−1ζ 1

2
(T − t)2 . (C.8)

This result is valid under the restriction that A is invertible, which is implied by the arrival rate of MOs (2) and Lemma 1.

Moreover, when h±(δ±0 ;κ) = h± we have bφ(t,λ) = 2
T∫
t

{h+ ·m+
t (u)− h− ·m−t (u)}(T − u) du and (C.7) follows immediately.

�

As already mentioned, studying the class of models for which h±(δ±0 ;κ) = h± are constant was motivated by the exponential

and power-law cases which we formalize in the two examples below.

Example 9. Exponential Fill Rate. Take κ± = f±(κ), where f± : Rk 7→ R+ are continuous functions. If h±(δ;κ) =

e−κ
±δ for δ > 0 and P

[
inf

t∈[0,T ]
κ±t > 0

]
= 1, then h±(δ±0 ;κ) = e−1 is constant and Proposition 8 applies.

Example 10. Power Fill Rate. Take κ± = f±(κ), where f± : Rk 7→ R+ are continuous functions, and α± > 1 as

fixed constants. If h±(δ;κ) =
[
1 + (κ±δ)α

±
]−1

for δ > 0 and P
[

inf
t∈[0,T ]

κ±t > 0

]
= 1, then δ±0 = (α± − 1)

− 1
α± (κ±)−1 and

h±(δ±0 ;κ) = α±−1
α± is constant and Proposition 8 applies.

Notice that the Poisson model of trade arrivals can be recovered by setting ρ = 0. Furthermore, if the initial states λ±0 are

equal and κ± are equal then bφ ≡ 0.
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Appendix C.4. Conditional Mean of Fill Probability process

Lemma 11. Conditional Mean of κt. Under the dynamics given in (3), the conditional mean m̃±t (u) := E[κ±u |Ft] is

m̃±t (u) = ϑ+
ρ

ξ

[
ηκm

±
t (u) + νκm

∓
t (u)

]
+

[
κ±t − ϑ−

ρ

ξ
(ηκλ

±
t + νκλ

∓
t )

]
e−ξ(u−t) (C.9)

where m±t (u) are given in Appendix B.1.

Proof. Proceeding as in the proof of Lemma 1 in Appendix B.1, m̃±t (u) satisfies the (uncoupled) system of ODEs

dm̃±t (u)

du
+ ξm̃±t (u) = ξϑ+ ρ

[
ηκm

±
t (u) + νκm

∓
t (u)

]
(C.10)

where m±t (u) is given by (B.2). Solving (C.10) with the initial condition m̃±t (t) = κ±t gives the stated result. �

Appendix D. Simulation Procedure

Here we describe in more detail the approach to simulating the PnL distribution of the HF strategy. Note that this produces

an exact simulation – specifically, there are no discretization errors that would be associated with approximating a continuous

time process by a discrete one (i.e. simulated interarrival times are correct up to machine precision).

1. Generate the duration until the next MO given the current level of activity λ±tn .

• In between orders, the total rate of order arrival is λt = 2θ+ (λ+
tn

+ λ−tn − 2θ)e−β(t−tn). To obtain a random draw

of the time of the next trade, draw a uniform u ∼ U(0, 1) and find the root19 of the equation τeτ = 1
2θ

(λtn − 2θ) eς

where ς =
λtn−2θ

2θ
+ β

2θ
lnu. Then, Tn+1 = 1

β
(τ − ς) is a sample for the next duration and tn+1 = tn + Tn+1.

2. Decide if the trade is a buy or sell MO.

• The probability that the MO is a buy order is pbuy =
θ+(λ+

tn
−θ) e−β Tn+1

2θ+(λ+
tn

+λ−
tn
−2θ) e

−β Tn+1
. Therefore, draw a uniform u ∼

U(0, 1) and if u < pbuy the order is a buy order, otherwise it is a sell order.

• Set the buy/sell indicator Bn+1 = 1 if it is a buy MO and Bn+1 = −1 if it is a sell MO.

3. Decide whether the MO filled the agent’s posted LO.

• Compute the posted LO at the time of the MO λ±tn+1
= θ + (λ±tn − θ) e

−β Tn+1 .

• Draw a uniform u ∼ U(0, 1).

• If the MO was a sell (buy) order, then if u < e−κ
−
t δ

−
t (u < e−κ

+
t δ

+
t ) the agent’s buy (sell) LO was lifted (hit).

4. Update the midprice and drift of the asset.

19This is efficiently computed using the Lambert-W function since A0 is typically small.
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• Generate two correlated normals Z1 and Z2 with zero mean and covariances:

C(Z1, Z1) = σ2

ζ2

(
Tn+1 − 2 1−e−ζTn+1

ζ
+ 1−e−2ζTn+1

2ζ

)
, C(Z2, Z2) = σ2

2ζ
(1− e−2ζTn+1), and

C(Z1, Z2) = σ2

2ζ2

(
1− 2e−ζTn+1 + e−2ζTn+1

)
.

Generate a third independent standard normal Z.

• Update price and drift. Stn+1 = Stn + αtn
1
ζ
(1− e−ζn+1) + Z1 + σ

√
Tn+1 Z and αtn+1 = e−ζTn+1αtn + Z2.

5. Update the inventory and agent’s cash: Xtn+1 = Xtn +Bn+1Stn+1 + δ+tn+1
and qtn+1 = qtn −Bn+1.

6. Decide if the trade is influential and update activities, FPs and drift.

• Draw a uniform u ∼ (0, 1), if u < ρ the trade is influential, set Hn+1 = 1, otherwise set Hn+1 = 0. Finally,

λ±tn+1
= θ + (λ±tn − θ) e

−β Tn+1 +
(
1
2
(1±Bn+1)ν + 1

2
(1∓Bn+1)η

)
Hn+1 ,

κ±tn+1
= ϑ+ (κ±tn − ϑ) e−ξ Tn+1 +

(
1
2
(1±Bn+1)νκ + 1

2
(1∓Bn+1)ηκ

)
Hn+1 ,

αtn+1 = 1
2
(1 +Bn+1)ε+ − 1

2
(1−Bn+1)ε− + αtn+1 ,

7. Repeat from step 1 until tn+1 ≥ T .

8. Flow the diffusion from the last time prior to maturity until maturity using step 4 with tn+1 = T .

9. Compute the terminal PnL = XT + qT ST (1 − ctrans sgn(qT )) where ctrans is the liquidation cost (additional fee

charged to the trader for taking liquidity from the market at time T due to forced liquidation of inventory).

The PnLs for the other types of HFTs employed in the simulation are obtained similarly.
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